ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

France 2030 : le CNRS et l’Inserm lancent un programme pour comprendre comment les cellules choisissent leur destin et parfois déraillent

 

       

 

 

 

 

 

France 2030 : le CNRS et l’Inserm lancent un programme pour comprendre comment les cellules choisissent leur destin et parfois déraillent

22 Nov 2024 | Par Inserm (Salle de presse) | Institutionnel et évènementiel

Organoïde cortical au stade 8 semaines © Alexandre Baffet, Institut Curie
Un organisme humain est constitué de plus de 35 000 milliards de cellules, toutes issues d’une seule cellule initiale. Cette cellule s’est multipliée, et chacune de ses descendantes a ensuite choisi une destinée spécifique. Mais comment les cellules décident-elles de leur destin au cours du développement ? Et peut-on intervenir pour corriger leur trajectoire lorsqu’un dysfonctionnement mène à des pathologies ? C’est ce que le nouveau programme de recherche Cell-ID tentera d’élucider. Porté par le CNRS et l’Inserm, ce programme est financé à hauteur de 50 millions d’euros sur sept ans dans le cadre de France 2030. En alliant pluridisciplinarité et nouvelles technologies, il ambitionne de poser les bases d’une médecine cellulaire dite « d’interception », capable de détecter et corriger les anomalies cellulaires avant qu’elles ne deviennent problématiques.

Bien que toutes les cellules d’un individu contiennent le même code ADN, toutes ne le lisent pas de la même manière. Les différentes manières d’interpréter ce code génétique contribuent donc à définir l’identité des cellules. La communauté scientifique, notamment via l’initiative européenne LifeTime a montré que les anomalies de destins cellulaires sont impliquées dans de nombreuses pathologies, dont le cancer. Les avancées récentes qui permettent d’étudier chaque cellule individuellement ouvrent aujourd’hui la voie à une exploration approfondie de l’identité cellulaire et des mécanismes par lesquels les choix de destinée s’opèrent dans l’espace et dans le temps.

Dans ce contexte, le programme national de recherche Identités et destins cellulaires (Cell-ID) propose de comprendre quand, comment et pourquoi une cellule suit un destin particulier en conditions normales, mais aussi comment elle en dévie lors de pathologies.

Piloté par le CNRS et l’Inserm et incluant de nombreux partenaires (Institut Curie, Institut Pasteur, CEA, universités, hôpitaux et industriels[1]), Cell-ID débute officiellement le 22 novembre 2024, avec un financement de 50 millions d’euros pour une durée de sept ans, financés par le plan d’investissement France 2030.
Le programme fera appel à des méthodes d’imagerie, de génomique fonctionnelle ou encore au développement de modèles de tissus complexes. Enfin, un effort particulier sera déployé dans la modélisation de données : celles-ci seront partagées grâce à une infrastructure dédiée, mise en place dans le cadre de ce programme.
En choisissant de se concentrer sur le développement neural et les cancers pédiatriques du cerveau, Cell-ID vise à permettre un diagnostic précoce de ces pathologies. Les chercheurs et les chercheuses espèrent ainsi pouvoir améliorer le suivi pendant le traitement et prévenir les risques d’évolution grave ou de récidive. En outre, les cancers pédiatriques ont un coût et un impact sociétal fort pour les enfants atteints et les familles. Les avancées scientifiques ambitionnées par Cell-ID pourraient permettre d’agir en amont afin de limiter ces répercussions et améliorer à terme la qualité de vie de ces enfants et celle de leur entourage.
Au sein des forces jointes du CNRS, de l’Inserm et des partenaires du programme, plus de 30 équipes de recherche en France sont impliquées dans ce projet ambitieux. La pluridisciplinarité est de mise puisque Cell-ID combine biologie, physique, sciences informatiques, mathématiques, chimie et médecine. Il s’agit avant tout de mobiliser toutes les compétences scientifiques nationales pour étudier sous tous les angles une cellule donnée. Le programme prévoit également un volet de formation et d’innovation pour les chercheurs et chercheuses de demain. Enfin, au-delà des recherches en laboratoire, un volet de communication vers le grand public et les patients est conçu pour répondre à leurs attentes et s’assurer que les travaux de recherche menés soient compris par la société.
Le programme Cell-ID devrait permettre des avancées technologiques importantes qui pourront être appliquées à divers domaines telles que les maladies infectieuses, cardiovasculaires, inflammatoires chroniques, neurodégénératives et à d’autres types de cancers. À terme, des appels pourraient être lancés pour renforcer les approches et ouvrir à ces autres pathologies.
L’État consacre 3 milliards d’euros de France 2030 pour la recherche à travers des programmes de recherche ambitieux, portés par les institutions de recherche pour consolider le leadership français dans des domaines clés, liés ou susceptibles d’être liés à une transformation technologique, économique, sociétale, sanitaire ou environnementale, et qui sont considérés comme prioritaires au niveau national ou européen.

L’Agence nationale de la recherche (ANR) est l’opérateur pour le compte de l’État des programmes de recherche de France 2030.

À propos du plan d’investissement France 2030
* Traduit une double ambition : transformer durablement des secteurs clefs de notre économie (santé, énergie, automobile, aéronautique ou encore espace) par l’innovation technologique, et positionner la France non pas seulement en acteur, mais bien en leader du monde de demain. De la recherche fondamentale, à l’émergence d’une idée jusqu’à la production d’un produit ou service nouveau, France 2030 soutient tout le cycle de vie de l’innovation jusqu’à son industrialisation.
* Est inédit par son ampleur : 54 Md€ seront investis pour que nos entreprises, nos universités, nos organismes de recherche, réussissent pleinement leurs transitions dans ces filières stratégiques. L’enjeu : leur permettre de répondre de manière compétitive aux défis écologiques et d’attractivité du monde qui vient, et faire émerger les futurs leaders de nos filières d’excellence. France 2030 est défini par deux objectifs transversaux consistant à consacrer 50 % de ses dépenses à la décarbonation de l’économie, et 50% à des acteurs émergents, porteurs d’innovation sans dépenses défavorables à l’environnement (au sens du principe Do No Significant Harm).
* Est mis en œuvre collectivement : pensé et déployé en concertation avec les acteurs économiques, académiques, locaux et européens pour en déterminer les orientations stratégiques et les actions phares. Les porteurs de projets sont invités à déposer leur dossier via des procédures ouvertes, exigeantes et sélectives pour bénéficier de l’accompagnement de l’État.
* Est piloté par le Secrétariat général pour l’investissement pour le compte du Premier ministre et mis en œuvre par l’Agence de la transition écologique (ADEME), l’Agence nationale de la recherche (ANR), Bpifrance, et la Caisse des Dépôts et Consignations (CDC).
Plus d’informations sur le site du Gouvernement et @SGPI_avenir
[1] L’ensemble des partenaires sont : l’Université de Montpellier, l’Université de Strasbourg, l’Université Paris Cité, Paris Sciences Lettres, Sorbonne Université, l’Université Toulouse Paul Sabatier, ainsi que l’Institut Curie, l’Institut Pasteur, le CEA, l’École des Mines, l’Institut Gustave Roussy et l’IGBMC Strasbourg.

 DOCUMENT        inserm        LIEN

 
 
 
 

Imagerie biomédicale à résolution microscopique : la révolution des ultrasons

 

       

 

 

 

 

 

Imagerie biomédicale à résolution microscopique : la révolution des ultrasons

27 Nov 2015 | Par Inserm (Salle de presse) | Technologie pour la sante
Une équipe de l’Institut Langevin (ESPCI, CNRS, Inserm) dirigée par Mickaël Tanter, directeur de recherche Inserm à l’ESPCI, vient de franchir une étape déterminante vers l’imagerie médicale très haute résolution utilisant des ondes ultrasonores. Les chercheurs sont parvenus à rendre compte de l’activité vasculaire du cerveau d’un rat in vivo et de manière non invasive, avec une résolution bien meilleure que n’importe quelle technique existante. Loin de l’échographe standard, la technique s’inspire plutôt de la super résolution optique (FPALM) qui avait été récompensée du Prix Nobel de Chimie 2014. Leurs travaux, publiés dans la prestigieuse revue Nature, constituent une véritable révolution pour l’imagerie biomédicale, en offrant la première technique d’imagerie microscopique permettant de voir en profondeur dans les tissus. Les applications potentielles sont immenses, de la détection précoce de tumeurs cancéreuses à d’autres pathologies cardiovasculaires et neurologiques.

Accéder aux détails microscopiques de la matière vivante représente encore aujourd’hui un défi difficile à relever. Quelle que soit la technique utilisée, les chercheurs se heurtent à un obstacle de taille : plus la longueur d’onde est petite, plus l’absorption et la diffusion des ondes dans les tissus sont importantes, diminuant le pouvoir de pénétration du signal. Il faut donc choisir entre pouvoir de pénétration et résolution de l’image. Pourtant depuis une vingtaine d’années des progrès considérables ont été réalisés en imagerie par ultrasons particulièrement adaptée à l’imagerie préclinique et clinique, dont l’équipe de Mickaël Tanter est une des pionnières. Ces scientifiques ont mis au point un échographe ultra-rapide, qui équipe déjà de nombreux hôpitaux dans le monde. Mais cette fois, ils ont poussé la technique encore plus loin, atteignant une résolution spatiale inégalée en imagerie médicale : celle du micromètre (1 millième de millimètre).
Tout commence en 2009, lorsque Mickaël Tanter donne une conférence sur l’imagerie par ultrasons aux États-Unis et assiste à la présentation d’une nouvelle technique de microscopie optique à fluorescence avec une résolution meilleure que la limite de diffraction, barrière pourtant supposée infranchissable. L’invention de cette technique optique vaudra d’ailleurs à ses inventeurs le Prix Nobel de Chimie en 2014. Le chercheur français comprend que le concept des opticiens et chimistes américains, limité à une imagerie de surface, pourrait être transposé dans le monde des ondes ultrasonores en utilisant un des échographes ultrarapides de son laboratoire. Dès son retour en France, il propose à son collègue Olivier Couture, chercheur CNRS dans son équipe, de s’en inspirer pour développer leur propre technique à base d’ultrasons.
Les chercheurs décident alors d’utiliser un agent de contraste, ici des microbulles de 3 µm de diamètre déjà employées dans le domaine médical. Après plusieurs années de recherche en collaboration avec une équipe de neurobiologie (ESPCI/CNRS) dirigée par Zsolt Lenkei, directeur de Recherche Inserm, ils parviennent à injecter ces multitudes de microbulles dans une veine d’un rat. La cadence ultrarapide d’acquisition de 5000 images par seconde permet d’extraire de manière très précise le signal individuel provenant de chaque microbulle du bruit de l’ensemble des signaux rétrodiffusés. Leurs positions uniques peuvent alors être localisées individuellement par ultrasons avec une précision micrométrique lors de leur passage dans le cerveau.

En retraçant la position exacte de chaque bulle à chaque instant, les chercheurs ont réussi à reconstituer une cartographie complète du système vasculaire cérébral du rat vivant en quelques dizaines de secondes. Les détails sont tels qu’ils peuvent dissocier des vaisseaux sanguins séparés de quelques micromètres, alors que la résolution était jusqu’ici de l’ordre du millimètre et limitée par la diffraction.

Plus encore, la vitesse d’écoulement du sang est également mesurée très précisément à chaque instant avec une très grande dynamique allant de quelques dizaines de centimètres par seconde dans les gros vaisseaux jusqu’à moins d’1mm/s dans les plus petits vaisseaux du système vasculaire.

Des applications directes
Le gain en résolution est énorme, d’un facteur 20 en moyenne, d’autant plus que la technique est non invasive et rapide ce qui est très important pour le confort du patient. « Nous pensons être à l’aube d’une nouvelle révolution dans le domaine de l’imagerie médicale, confie Mickaël Tanter. En quelques dizaines de secondes, nous pouvons déjà recueillir des millions de signatures de nos microbulles et atteindre des résolutions microscopiques à plusieurs centimètres de profondeur. Nous pensons pouvoir encore accélérer cette technique pour réaliser ces images en une à deux secondes ouvrant ainsi la voie à l’imagerie fonctionnelle en super-résolution».
La technique sera prochainement évaluée sur l’homme, en particulier pour visualiser la micro-vascularisation hépatique chez des patients atteints de tumeurs du foie, ou encore pour l’imagerie trans-crânienne très haute résolution du réseau vasculaire cérébral chez l’adulte. Les applications potentielles sont très nombreuses, y compris la détection précoce de cancers dont la micro-vascularisation est à ce jour impossible à détecter. En fait n’importe quel organe pourra être imagé en 3D à l’échelle microscopique, via un appareil très peu volumineux.
Alors que la plupart des techniques actuelles de microscopie s’appuient sur des approches optiques limitées à une imagerie en surface, ce sont finalement les ultrasons qui viennent résoudre pour la première fois la question de l’imagerie microscopique en profondeur dans les organes.

 

  DOCUMENT      inserm     LIEN

 
 
 
 

Des réseaux de neurones humains pour modéliser la maladie de Parkinson 14 Jan 2019 |

 

Des réseaux de neurones humains pour modéliser la maladie de Parkinson
14 Jan 2019  
Par Inserm (Salle de presse) | Neurosciences, sciences cognitives, neurologie, psychiatrie


L’agrégation de la protéine alpha-synucléine est à l’origine de la dégénérescence neuronale dans la maladie de Parkinson. En utilisant des cellules souches humaines reprogrammées en cellules nerveuses, des chercheurs du CNRS et de l’Inserm viennent de montrer que les agrégats d’alpha-synucléine se propagent de neurones en neurones. Cette découverte réalisée sur des réseaux de neurones humains, pourrait permettre d’élaborer de nouvelles stratégies thérapeutiques afin de prévenir la multiplication des agrégats d’alpha-synucléine et la dégénérescence des neurones. L’étude est publiée le 10 janvier 2019 dans la revue Stem Cell Reports.

Des recherches publiées en 2015[1] démontraient que des formes altérées et agrégées de la protéine alpha-synucleine se multipliaient dans le cerveau de rongeurs et étaient à l’origine de différents symptômes parkinsoniens.
Dans cette nouvelle étude, les chercheurs[2] ont utilisé des cellules souches humaines, dites pluripotentes, les ont transformées en neurones et ont conçu un réseau de neurones simplifié et robuste, représentatif du cerveau humain. En exposant ces neurones à des formes altérées de l’alpha-synucléine, ils ont observé l’apparition de signes pathologiques caractéristiques de la maladie de Parkinson et de l’atrophie multi-systématisée (AMS), une autre maladie neuro-dégénérative. En effet, pour chacune de ces maladies, l’alpha-synucléine s’agrège différemment formant une « signature » de la pathologie.
Les scientifiques ont également démontré que les neurones « malades » transférent l’alpha-synucléine altérée à des neurones sains, notamment à travers des connexions synaptiques. Ainsi, en passant de neurones en neurones et en se multipliant à la manière de la protéine infectieuse prion, les formes altérées de l’alpha-synucléine affectent l’intégrité et la fonction du réseau neuronal.
Le nouveau modèle de réseau neuronal issu de cellules souches humaines et imaginé par les chercheurs permettra d’étudier l’effet de molécules inédites capables de cibler les formes altérées de l’alpha-synucléine afin d’empêcher leur propagation et donc, la dégénérescence neuronale.

En outre, en étudiant les « signatures », de la maladie de Parkinson et l’AMS, ces travaux pourraient permettre d’améliorer le dépistage de ces maladies.

[1] Communiqué de presse du 10 juin 2015: https://www2.cnrs.fr/presse/communique/4077.htm
[2] Chercheurs de l’Institut des Cellules Souches pour le traitement et l’étude des maladies monogéniques (Inserm/Université d’Evry Val d’Essonne/AFM), du Laboratoire de maladies neurodégénératives (CNRS/CEA/Université Paris-Sud) et des laboratoires Adaptation Biologique et Vieillissement (CNRS/Sorbonne Université) et Neurosciences Paris-Seine (CNRS/Inserm/Sorbonne Université), tous deux appartenant à l’Institut de Biologie de Paris-Seine.

 

  DOCUMENT      inserm     LIEN

 
 
 
 

Découverte du rôle d’un régulateur cérébral impliqué dans des maladies psychiatriques

 

       

 

 

 

 

 

Découverte du rôle d’un régulateur cérébral impliqué dans des maladies psychiatriques

11 Déc 2023 | Par Inserm (Salle de presse) | Biologie cellulaire, développement et évolution | Neurosciences, sciences cognitives, neurologie, psychiatrie

Dans le cerveau, un récepteur supposément excitateur appelé GluD1 se révèle contre tout attente jouer un rôle majeur dans le contrôle de l’inhibition des neurones. Des altérations dans le gène GluD1 étant retrouvées dans un certain nombre de troubles neurodéveloppementaux et de maladies psychiatriques comme les troubles du spectre autistique (TSA) ou la schizophrénie, cette découverte ouvre la voie à de nouvelles pistes thérapeutiques pour lutter contre les déséquilibres entre transmissions neuronales excitatrices et inhibitrices associés à ces maladies. Ce travail, publié dans Science, est le fruit de collaborations de chercheurs et chercheuses de l’Inserm, du CNRS et de l’ENS au sein de l’Institut de biologie de l’ENS (IBENS, Paris) avec le laboratoire de Biologie moléculaire du MRC à Cambridge au Royaume-Uni.

La complexité du fonctionnement du cerveau révèle bien des surprises. Alors qu’il était communément admis que dans l’activité cérébrale, des familles de récepteurs synaptiques (situés à l’extrémité d’un neurone) transmettaient des messages excitateurs et d’autres inhibiteurs vis-à-vis des neurones, une étude copilotée par les chercheurs Inserm Pierre Paoletti et Laetitia Mony à l’Institut de Biologie de l’ENS rebat les cartes.
Pour bien comprendre de quoi il retourne, revenons aux fondamentaux. Une synapse « excitatrice » déclenche la création d’un message nerveux sous forme de courant électrique si un récepteur à sa surface peut se fixer à un neurotransmetteur excitateur présent dans l’espace interneuronal, le plus souvent du glutamate. On parle d’excitation neuronale. Une synapse « inhibitrice » empêche au contraire cette excitation neuronale en libérant un neurotransmetteur inhibiteur, souvent le GABA. On parle d’« inhibition neuronale ». Ainsi, la famille de récepteurs à glutamate (iGluR) et celle des récepteurs à GABA (GABAAR) ont a priori des rôles opposés.
Toutefois, un sous-type de récepteur au glutamate appelé GluD1 intriguait les scientifiques. En effet, alors qu’il est censé avoir un rôle excitateur, celui-ci est préférentiellement retrouvé au niveau de synapses inhibitrices. Cette observation, effectuée par l’équipe de la chercheuse Inserm Cécile Charrier à l’Institut de Biologie de l’ENS en 2019, avait interpellé la communauté scientifique car le gène GluD1 est souvent associé à des troubles du neurodéveloppement comme l’autisme ou à des maladies psychiatriques de type troubles bipolaires ou schizophrénie, dans les études génétiques de population humaine. Comprendre le rôle de ce récepteur représente donc un enjeu de taille. Pour y voir plus clair, l’équipe de Pierre Paoletti a étudié ses propriétés moléculaires et sa fonction, à partir de cerveaux de souris, au niveau de l’hippocampe où il est fortement exprimé.

Un rôle atypique
Les chercheurs savaient déjà que contrairement à son nom, le récepteur GluD1 ne peut pas se lier au glutamate. Mais dans cette étude, ils ont eu la surprise de constater qu’il fixait le GABA. L’équipe de Radu Aricescu à Cambridge a même décrit dans la publication la structure atomique fine du site d’interaction de GluD1 avec le GABA, grâce à une technique appelée cristallographie aux rayons X[1].
Son rôle dans le cerveau n’est donc a priori pas excitateur de l’activité neuronale mais inhibiteur. En prenant en compte ce résultat, peut-on toujours dire qu’il s’agit d’un récepteur appartenant à la famille des récepteurs à glutamate ?
« C’est en effet une interrogation mais toutes les analyses de phylogénie (les liens de parenté entre gènes et protéines) et les données structurales montrent qu’il en fait bien partie. En revanche, il est possible que certaines mutations acquises au cours de l’évolution aient profondément modifié ses propriétés fonctionnelles », explique Pierre Paoletti.
Autre curiosité, ce récepteur ne fonctionne ni comme un récepteur « classique » du glutamate ni comme un récepteur du GABA. Les deux provoquent en effet l’ouverture de canaux dans la membrane cellulaire permettant le passage d’ions responsables de l’excitation ou de l’inhibition du neurone. Le récepteur GluD1, lui, ne permet l’ouverture d’aucun canal. Son activité résulte d’autres mécanismes internes à la cellule qui restent à clarifier.
Enfin, ce travail suggère un rôle régulateur majeur de GluD1 vis-à-vis des synapses inhibitrices. En effet, lorsqu’il est activé par la présence de GABA, la synapse inhibitrice voit son efficacité augmenter. Cela se traduit par une réponse inhibitrice plus importante qui perdure pendant des dizaines de minute.

« Autrement dit, GluD1 renforce le signal d’inhibition. Peut-être en favorisant le recrutement de nouveaux récepteurs GABA à la synapse ? On peut en tout cas parler de régulateur clé », explique Laetitia Mony.
Pour les scientifiques ayant contribué à ce travail, cette découverte marque une véritable avancée.
« Ces résultats ouvrent la voie à une meilleure compréhension des déséquilibres entre messages excitateurs et inhibiteurs dans le cerveau en cas de troubles neurodéveloppementaux et de maladies psychiatriques comme les TSA ou encore la schizophrénie, ou dans des maladies comme l’épilepsie caractérisée par une hyper excitabilité neuronale. Dans un second temps, il sera important d’étudier si GluD1 peut constituer une cible thérapeutique intéressante pour rétablir un meilleur équilibre et réduire les symptômes dans ces maladies », concluent-ils.
 
[1] Il s’agit d’une technique d’analyse physicochimique qui se fonde sur la diffraction des rayons X par la matière pour connaître sa composition moléculaire et sa structure en 3D.

  DOCUMENT      inserm     LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google