|
|
|
|
 |
|
Matériaux poreux, de l’énergie mécanique sous le pied? |
|
|
|
|
|
Matériaux poreux, de l’énergie mécanique sous le pied !
25.06.2025, par Sophie Germette-Nicaud (pour le CNRS Alsace)
Mis à jour le 25.06.2025
Un des défis majeurs d’aujourd’hui ? Le stockage de l’énergie. Et là, toutes ses formes sont convoitées, qu’elle soit calorifique, chimique, électrique ou même… mécanique. Si les batteries chimiques sont bien connues, une autre piste, plus discrète et pleine de promesses, est explorée dans le projet MESAMM. Plongez dans ce monde nanométrique sous pression qui pourrait donner un jour naissance, pourquoi pas, à une nouvelle génération d’amortisseurs.
Dans le cadre du projet MESAMM, Andrey Ryzhikov, chercheur CNRS en science des matériaux à l’Institut de Science des Matériaux de Mulhouse1 et ses collègues étudient le potentiel de stockage d’énergie mécanique dans des matériaux microporeux. Ces solides possèdent une structure 3D qui révèle de très nombreuses cavités, en motifs répétés, appelées nanopores. Explorons ce monde subatomique.
Représentation 3D de la structure cristalline d’une zéolithe, révélant la présence de nanopores en motifs répétés © Den Bazin (medillus.com) pour le CNRS Alsace
Pour lire la suite consulter le LIEN
DOCUMENT cnrs LIEN
|
|
|
|
|
 |
|
FISSION ET FUSION NUCLEAIRE |
|
|
|
|
|
"Le Japon a démarré le premier réacteur à fusion nucléaire. Pouvez-vous nous expliquer les différences entre la fusion et la fission et nous dire si elle sera disponible pour tous bientôt ?", nous demande Joel Daigle sur notre page Facebook. C'est notre question de lecteur de la semaine. Merci à toutes et à tous pour votre participation.
Fission nucléaire : briser des atomes
Tout d'abord, la fission nucléaire : c'est un phénomène au cœur des centrales qui fournissent près de 70% de l’électricité produite en France en 2019 (selon EDF). Ces centrales, reconnaissables à leurs larges cheminées, sont alimentées en matériaux fissiles, matériaux dont le noyau atomique est suffisamment instable pour pouvoir être brisé sous l’effet d’un bombardement à neutron, tel que l’uranium ou le plutonium.
Certains atomes, possédant un grand nombre de protons et de neutrons (les protons sont chargés positivement tandis que les neutrons ne possèdent pas de charge électrique), sont instables. Cette instabilité pousse le noyau de l’atome à se séparer en composants plus petits émettant par la même occasion une grande quantité d’énergie. Ce phénomène est à l’origine de la radioactivité, émission spontanée de rayons électromagnétiques de haute énergie, et se produit naturellement. À titre d’exemple, une banane est naturellement radioactive due à la présence de potassium 40.
Pour lire la suite consulter le LIEN
DOCUMENT sciences et avenir.fr LIEN
|
|
|
|
|
 |
|
intelligence artificielle |
|
|
|
|
|
intelligence artificielle
Consulter aussi dans le dictionnaire : intelligence
Ensemble de théories et de techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence humaine.
Avec l'intelligence artificielle, l'homme côtoie un de ses rêves prométhéens les plus ambitieux : fabriquer des machines dotées d'un « esprit » semblable au sien. Pour John MacCarthy, l'un des créateurs de ce concept, « toute activité intellectuelle peut être décrite avec suffisamment de précision pour être simulée par une machine ». Tel est le pari – au demeurant très controversé au sein même de la discipline – de ces chercheurs à la croisée de l'informatique, de l'électronique et des sciences cognitives.
Malgré les débats fondamentaux qu'elle suscite, l'intelligence artificielle a produit nombre de réalisations spectaculaires, par exemple dans les domaines de la reconnaissance des formes ou de la voix, de l'aide à la décision ou de la robotique.
INTELLIGENCE ARTIFICIELLE ET SCIENCES COGNITIVES
Au milieu des années 1950, avec le développement de l'informatique naquit l'ambition de créer des « machines à penser », semblables dans leur fonctionnement à l'esprit humain. L'intelligence artificielle (IA) vise donc à reproduire au mieux, à l'aide de machines, des activités mentales, qu'elles soient de l'ordre de la compréhension, de la perception, ou de la décision. Par là même, l'IA est distincte de l'informatique, qui traite, trie et stocke les données et leurs algorithmes. Le terme « intelligence » recouvre ici une signification adaptative, comme en psychologie animale. Il s'agira souvent de modéliser la résolution d'un problème, qui peut être inédit, par un organisme. Si les concepteurs de systèmes experts veulent identifier les savoirs nécessaires à la résolution de problèmes complexes par des professionnels, les chercheurs, travaillant sur les réseaux neuronaux et les robots, essaieront de s'inspirer du système nerveux et du psychisme animal.
LES SCIENCES COGNITIVES
Dans une optique restrictive, on peut compter parmi elles : ?– l'épistémologie moderne, qui s'attache à l'étude critique des fondements et méthodes de la connaissance scientifique, et ce dans une perspective philosophique et historique ; ?– la psychologie cognitive, dont l'objet est le traitement et la production de connaissances par le cerveau, ainsi que la psychologie du développement, quand elle étudie la genèse des structures logiques chez l'enfant ; ?– la logique, qui traite de la formalisation des raisonnements ; ?– diverses branches de la biologie (la biologie théorique, la neurobiologie, l'éthologie, entre autres) ; ?– les sciences de la communication, qui englobent l'étude du langage, la théorie mathématique de la communication, qui permet de quantifier les échanges d'informations, et la sociologie des organisations, qui étudie la diffusion sociale des informations.
Pour lire la suite, consulter le LIEN
DOCUMENT larousse.fr LIEN
|
|
|
|
|
 |
|
Le calcul et l'ordinateur quantiques |
|
|
|
|
|
Le calcul et l'ordinateur quantiques
Publié le 18 mai 2021
Si l'on ne dispose pas encore d’une véritable technologie d’ordinateur quantique, qui permettrait d'exploiter toute la puissance du calcul quantique, de nombreuses routes sont néanmoins explorées aujourd’hui. Toutes font encore face à des difficultés sans solution viable. Mais l’histoire du domaine a montré que des verrous considérés comme infranchissables finissaient par être levés. C’est pourquoi la recherche mondiale est plus active que jamais et les annonces publiques se multiplient, dans le cadre de ce qui est appelé aujourd’hui la "deuxième révolution quantique".
Le calcul quantique ambitionne d'utiliser les propriétés quantiques ultimes de la matière (la superposition, l'intrication et la non-localité) pour effectuer massivement des opérations sur des données grâce à l'ordinateur quantique. Il permettrait de ce fait de dépasser très largement les capacités offertes par les ordinateurs classiques.
LES QUBITS, AU COEUR DU CALCUL QUANTIQUE
Le calcul quantique s’appuie sur des qubits, pendants quantiques des bits classiques. D’un point de vue physique, les qubits sont des systèmes matériels pouvant être mis dans deux états quantiques distincts. Conformément aux lois de la physique quantique, le qubit peut être placé dans un ensemble continu de superpositions de ses deux états de base, contrairement au bit classique qui ne peut prendre que deux valeurs (0 ou 1).
Comme les bits classiques, les qubits peuvent être utilisés pour encoder une information et soumis à des portes quantiques (équivalents des portes logiques).
un bit quantique ?
Dans un ordinateur classique, l’information est stockée dans un ensemble (registre) de cases mémoires, les bits, dont la valeur est soit 0, soit 1. Un bit quantique (qubit) a, quant à lui, deux états quantiques |0> et |1>, séparés par une différence d’énergie définissant sa fréquence (fQB), et peut être à la fois dans ces deux états. Au cours d’un algorithme (succession d'opérations dites « portes logiques »), le registre de qubits se trouve dans une superposition quantique de tous ses états possibles (|00...0>, |10...0>, |11...1>, |10...1>), permettant un calcul massivement parallèle.
Etats quantiques d'un bit quantique. © CEA/F. Mathé
Le fonctionnement d'un ordinateur quantique
Vidéo
Comment fonctionne un ordinateur quantique ?
<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>
Atouts et difficultés de la recherche sur le calcul quantique
La promesse d’un parallélisme massif
Grâce à ses propriétés quantiques (superposition et intrication), un registre de N qubits se trouve à un instant donné dans une superposition de ses 2N configurations de base. Un registre de N bits ne peut, lui, se trouver que dans une seule d’entre elles à la fois.
Toute opération appliquée à un registre de N qubits s'effectuerait donc en parallèle sur les 2N états, là où un ordinateur classique doit traiter l’opération de façon séquentielle. Ce parallélisme massif ouvre des horizons extrêmement prometteurs, laissant espérer une résolution beaucoup plus rapide de certains problèmes ou l’identification d’une solution à des problèmes aujourd’hui insolubles.
L'intrication quantique
L’intrication quantique est un phénomène dans lequel deux particules (ou groupes de particules) forment un système unique, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare.
Décohérence et correction d’erreurs
De très nombreux obstacles physiques et technologiques se dressent toutefois sur la route du calcul quantique, à commencer par la fragilité de l’état de superposition qui lui est nécessaire. Toute interaction, aussi minime soit-elle, avec l’extérieur (que ce soit par le biais d’interactions environnementales ou de mesures effectuées sur le système) a pour effet de détruire la superposition quantique : c’est la décohérence. La difficulté s’aggrave à mesure que le nombre de qubits intriqués augmente : le temps de cohérence d’un état intriqué de N qubits est en effet environ N fois plus court que celui d’un seul qubit.
Or, les interactions avec l’environnement ne peuvent par ailleurs être réduites à zéro, car elles sont nécessaires pour appliquer des opérations logiques sur les qubits et en effectuer la lecture. En pratique, il faut donc corriger les erreurs.
Vidéo
Les bases de la physique quantique
<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>
L'histoire de l'ordinateur quantique
Au début des années 1980, le Nobel de physique Richard Feynman est le premier à pressentir les possibilités faramineuses d’un ordinateur capable de tirer parti des lois quantiques.
Dès les années 1990, plusieurs théoriciens démontrent que certains calculs verraient leur résolution accélérée dans des proportions inouïes s’il était possible de les implémenter sur des bits quantiques, aussi appelés qubits, plutôt que sur des bits classiques. À condition, bien sûr, de disposer d’un processeur quantique pour les utiliser, processeur dont personne ne sait à l’époque à quoi il pourrait ressembler.
* Télécharger l'infographie sur un processeur quantique élémentaire
Molécules en phase liquide, ions piégés par des faisceaux laser, impureté dans les solides… les idées commencent à fuser dans les laboratoires de physique pour définir ce qui pourrait devenir les briques de base d’un futur ordinateur quantique, à l’instar des transistors de la microélectronique classique.
Vidéo
L'histoire de l'ordinateur et de la physique quantique
<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>
QUELS SONT LES ENJEUX DE LA RECHERCHE SUR LE CALCUL ET L'ORDINATEUR QUANTIQUES ?
Au XXe siècle, la mise au jour de la physique quantique a révolutionné notre conception du monde mais aussi notre mode de vie avec ses applications : lasers, transistors, circuits intégrés.
Une deuxième révolution quantique advient à l’aube du XXIe siècle. Elle regroupe des recherches visant à concevoir et à réaliser des dispositifs de rupture qui exploitent les phénomènes physiques de la superposition et de l’intrication quantique. C’est un domaine en pleine expansion avec de très forts enjeux scientifiques et technologiques. En particulier, la réalisation d’un ordinateur quantique, dont le calcul est intrinsèquement parallèle et permet de traiter en un temps très réduit de grandes quantités d’information, avec des performances inaccessibles au calcul classique, permettrait des approches révolutionnaires pour résoudre certaines classes de problèmes. Parmi les applications possibles :
* La chimie : simuler, in silico, de manière exacte, la structure et le fonctionnement de grosses molécules d’intérêt pour la pharmacologie ou pour l’agronomie. Avec les plus puissants ordinateurs actuels, il est possible de simuler des petites molécules mais il est souvent nécessaire de recourir à de fortes approximations dès que la taille du système étudié augmente.
* Le Data mining : Accélérer la recherche d’une information spécifique dans une vaste base de données.
* L’optimisation de procédés de l’industrie du futur : trouver une solution optimale dans un système complexe multiparamétrique, comme par exemple la tournée la plus rapide d’un camion de livraison ou ajuster l’offre à la demande sur un réseau électrique très décentralisé.
* L’intelligence artificielle : au cours de la phase d’apprentissage d’un système d’IA, telle qu’une reconnaissance d’images, les informations pourraient être simultanément reconnues et non de façon séquentielle comme c’est le cas avec des processeurs classiques (examiner une situation, puis une autre, etc.).
*
OÙ EN EST LA RECHERCHE DANS LE DOMAINE DU CALCUL QUANTIQUE ?
La recherche fondamentale dans le domaine de l'information quantique a connu un essor important cette dernière décennie. Les enjeux dans ce domaine et la rupture technologique que présenterait un ordinateur quantique ont incité de grandes entreprises à investir d'importants moyens, en s'associant à des communautés scientifiques, ou en créant leurs propres laboratoires de recherche.
L'association de Google avec l'Université de Californie de Santa Barbara ou la collaboration annoncée sur dix ans du groupe lntel avec l'université technologique de Delft illustrent l'engouement pour cette thématique de recherche et la nécessité de construire un véritable partenariat public-privé sur le long terme. Atos-Bull, leader européen du calcul intensif, s'est aussi positionné activement sur la feuille de route de l'ordinateur quantique en réalisant un émulateur d'ordinateur quantique intégrant finement mémoire et calcul dans un serveur classique optimisé, et en créant une équipe spécialisée en logiciel adapté au quantique.
4 pistes de qubits en compétition dans le monde
Actuellement, 4 types de qubits sont à l’étude dans le monde : le qubit supraconducteur, le qubit silicium, le qubit à ions piégés et le qubit photonique.
* Le qubit supraconducteur est pour le moment la technologie la plus avancée. Il correspond à l’état d’un courant supraconducteur qui traverse une barrière très fine grâce à l’effet Josephson (c’est-à-dire l’apparition d’un courant entre deux matériaux supraconducteurs séparés par une couche d’un matériau non supraconducteur). L’objectif est de créer, à très basse température, une superposition de deux états distincts d’un courant qui oscille à haute fréquence et traverse la barrière en une boucle supraconductrice. Cette technique est utilisée notamment par IBM, Google, Intel, D-Wave et le CEA.
* Le qubit silicium, utilise, également à très basse température, la superposition (provoquée par un champ magnétique) du spin (une propriété quantique des particules qui n’a pas d’équivalent en physique classique) d’un électron. De petite taille (généralement 30 nanomètres), les qubits silicium pourraient ainsi être intégrés par millions voire milliards sur une même puce. Ils sont en outre compatibles avec les technologies CMOS (Complementary Metal Oxide Semiconductor : technologie de fabrication des composants électroniques), largement utilisées dans l’industrie microélectronique, ce qui leur donne un avantage compétitif pour la production en série. Cette approche est développée notamment par Intel et le CEA.
* Le qubit à ions piégés correspond à des orientations magnétiques d’ions, généralement de calcium, maintenus sous vide. Il fonctionne lui aussi à très basse température. Un laser sert à la mesure et exploite le phénomène de fluorescence des ions excités par le laser. Le magnétisme est utilisé pour l’activation des portes quantiques (qui sont les briques élémentaires d’un circuit quantique, fonctionnant sur quelques qubits). Certes difficilement industrialisables, les ions piégés peuvent s’intriquer plus librement et donc résoudre des calculs complexes plus facilement.
* Enfin, le qubit photonique est, quant à lui, codé sur de nombreux paramètres indépendants servant à décrire l’état d’un photon (aussi appelés degrés de liberté) : polarisation, couleur, forme spatiale ou temporelle. Les portes quantiques sont réalisées à l’aide de dispositifs optiques avec des filtres à deux couleurs ou polarisants. Il faut un grand nombre de lasers pour piloter l’ensemble, ce qui est contraignant. L’avantage de cette option est que ces qubits fonctionnent à température ambiante.
Une accélération mondiale et un grand nombre d’initiatives publiques et privées
Plusieurs actions majeures à l'étranger (Etats-Unis, Royaume-Uni, Pays-Bas, Danemark) impliquent dès aujourd'hui de très grands industriels (Google, Intel…) et mobilisent des financements de plusieurs dizaines de millions d'euros.
Au niveau européen, un flagship sur l'ingénierie quantique a été décidé en 2016 et a démarré en 2018 avec l'ambition d'amener les technologies quantiques sur le marché. Le financement annoncé est d'au moins un milliard d'euros, apporté par la Commission européenne et les Etats membres sur dix ans.
A l'échelle nationale, Emmanuel Macron a présenté le 21 janvier 2021 le Plan quantique français, dont le Programme et équipements prioritaires de recherche dédié est coordonné par le CEA, le CNRS et l'INRIA.
Un grand nombre de voies à explorer pour espérer lever les verrous conceptuels et technologiques
Un grand nombre de voies de réalisation physique est développé en parallèle. Aucun consensus ni aucun argumentaire robuste n’existe aujourd’hui sur la solution la plus adaptée pour réaliser un ordinateur quantique comprenant plus d’une dizaine de qubits. Tous les systèmes étudiés jusqu’à présent se sont en effet heurtés aux problèmes de décohérence et de complexité rapidement croissante des dispositifs quand le nombre de qubits augmente : le temps de cohérence d’un état intriqué de N qubits est en effet environ N fois plus court que celui d’un seul qubit.
Or, les interactions avec l’environnement ne peuvent par ailleurs être réduites à zéro, car elles sont nécessaires pour appliquer des opérations logiques sur les qubits et en effectuer la lecture. En pratique, il faut donc corriger les erreurs. La seule architecture connue pour ce faire, appelée « code de surface », demande un très grand nombre de qubits physiques par qubit logique.
Ce problème de la correction d’erreurs est donc plus qu’ardu car ses difficultés sont d’ordre à la fois conceptuel et technologique, liant degrés de liberté, interactions, complexité, méthode d’adressage, méthode de mesure, décohérence. A ces questions s’ajoute la vaste problématique de l’algorithmique et de son implémentation pratique dans une architecture donnée (traitement des erreurs, langage de programmation…).
Notions clés
* Le bit quantique ou qubit est l'unité élémentaire pouvant porter une information quantique. Comme le 1 et le 0 sont les deux états d'un bit classique ordinaire, un qubit est la superposition cohérente d'au moins deux états de base quantiques, que l'on peut noter |0> et |1>.
* Au XXe siècle, la mise au jour de la physique quantique a révolutionné notre conception du monde mais aussi notre mode de vie avec ses applications : lasers, transistors, circuits intégrés.
* Une deuxième révolution quantique advient à l’aube du XXIe siècle. Elle regroupe des recherches visant à concevoir et à réaliser des dispositifs de rupture qui exploitent les phénomènes physiques de la superposition et de l’intrication quantique.
DOCUMENT cea LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] - Suivante |
|
|
|
|
|
|