ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LES HORMONES

 

 

 

 

 

 

 

Les hormones
Ursula Lenseele, Olivier Bosler, Yves Combarnous,Nadine Imbault dans mensuel 357
daté octobre 2002 -  Réservé aux abonnés du site
Chefs d'orchestre du monde vivant, les hormones ? Très courantes chez les végétaux et présentes dans presque tout le règne animal, elles sont incontournables chez les animaux à sang chaud. Aucune des grandes fonctions physiologiques ne leur échappe : même ce grand ordonnateur qu'est le cerveau se trouverait, sans elles, bien dépourvu.
Qu'est-ce qu'une hormone ?
C'est à la fin du XIXe siècle que le biologiste Claude Bernard commence à travailler sur les sécrétions internes et que le physiologiste Charles-Edouard Brown propose une première définition de celles qu'on n'appelle pas encore hormones : « Principe sécrété par un groupe de cellules agissant à distance sur un autre groupe de cellules avec différents effets. » Le terme hormone du grec « j'excite » fait son apparition en 1905. En 1909, c'est au tour de l'endocrinologie, « la science des sécrétions internes », de voir le jour.

Chez l'homme, il existe de nombreux types structuraux d'hormones : des stéroïdes, solubles dans les graisses et qui traversent donc facilement les membranes biologiques, des peptides et des protéines insolubles dans les graisses insuline, hormone de croissance..., et des dérivés d'un acide aminé, telles l'adrénaline ou la mélatonine. Le monoxyde d'azote, lui, se distingue en tant qu'hormone gazeuse. Certaines hormones sont produites par des cellules spécialisées rassemblées en glandes hypophyse, thyroïde, glande surrénale..., d'autres par des cellules endocrines plus ou moins dispersées dans divers organes ovaires, testicules..., d'autres enfin par des cellules qui ne sont pas seulement endocrines. Les hormones sont impliquées dans la régulation de toutes les grandes fonctions physiologiques : le métabolisme énergétique, l'équilibre du milieu intérieur, la nutrition, la reproduction, le développement et la croissance, sans oublier la maturation du système nerveux.

Elles sont répandues dans tout le règne animal, tant chez les vertébrés que chez les invertébrés. Chez ces derniers, ce sont souvent des sécrétions du système nerveux. Ainsi l'hydre possède-t-elle, à la base de ses tentacules, des cellules nerveuses qui synthétisent une neurohormone impliquée dans la croissance, la régénération et la reproduction de l'animal. Certains mollusques - les céphalopodes, par exemple - ont des systèmes plus élaborés : de véritables glandes endocrines, comme la glande optique. Les crustacés, quant à eux, possèdent un système endocrinien complexe, tout comme les insectes, chez qui les hormones exercent des effets sur la croissance et les métamorphoses ou sur le maintien dans l'hémolymphe* de concentrations appropriées en métabolites.

Les végétaux ont-ils aussi des hormones ?
Oui. Les hormones végétales ont été découvertes au début du XXe siècle. La première à avoir été cristallisée, en 1934, est l'auxine. Mais dès 1880, lors d'expériences sur le phototropisme, Charles Darwin avait mis en évidence l'existence dans les végétaux d'une substance capable de diffuser. Cinq grandes classes d'hormones végétales ont par la suite été définies : les auxines, les cytokinines, les gibbérellines, l'acide abcissique et l'éthylène gazeux. Depuis, d'autres molécules impliquées dans la morphogenèse végétale ont été découvertes. Là où les hormones animales sont véhiculées par le sang ou l'hémolymphe, les hormones végétales circulent dans les vaisseaux xylème et phloème qui transportent la sève. Elles sont aussi, parfois, prises en charge par d'autres systèmes de transport.

Les auxines, cytokinines et gibbérellines interviennent principalement dans la régulation du métabolisme de la plante et de sa croissance, la stimulation de la différenciation tissulaire, la détermination de la floraison et la maturation des fruits. L'acide abscissique, lui, fut initialement considéré comme un inhibiteur impliqué dans la dormance des bourgeons. Mais on sait maintenant que, à l'intar des autres régulateurs de croissance, il joue des rôles multiples durant le cycle de développement de la plante. Quant à l'éthylène, c'est l'hormone de la maturation du fruit qui le synthétise, mais aussi des fruits voisins. C'est pourquoi « un fruit pourri gâte tout le panier ». L'éthylène agit aussi durant les périodes de croissance, de floraison et de chute des feuilles. Il existe, par ailleurs, des phytohormones qui jouent un rôle dans la défense des plantes en cas d'agression par des insectes prédateurs ou d'attaque par des pathogènes : la traumatine et l'acide jasmonique.

Comment les hormones agissent-elles ?
Chez l'animal, les hormones se lient à un récepteur protéique spécifique situé soit dans la membrane de la cellule cible, soit dans le cytoplasme ou le noyau de ladite cellule. Leurs effets sont à court ou à long terme. Celles qui se lient à des récepteurs membranaires par exemple l'adrénaline et les hormones peptidiques et protéiques agissent plutôt sur un mode aigu. Celles reconnaissant des récepteurs nucléaires ont une action plus prolongée, directement au niveau de l'expression des gènes - c'est le cas des hormones stéroïdes comme la progestérone, l'oestradiol ou le cortisol. La quantité d'hormone synthétisée est finement régulée, soumise à des boucles de contrôle positif ou négatif qui permettent d'adapter la production aux besoins. Cette régulation se fait soit par le biais de l'hormone elle-même - on parle alors de rétrocontrôle -, soit par le biais d'une autre hormone. Elle implique parfois le système nerveux.

On sait moins de choses du mode d'action des hormones végétales. Leur étude est rendue difficile par le fait qu'elles agissent à des quantités infimes et de façon moins spécifique que les hormones animales. En effet, chacune peut intervenir sur plusieurs mécanismes physiologiques et, inversement, un même processus physiologique peut être modulé par des hormones différentes. Par ailleurs, elles peuvent interagir physiologiquement. Si l'on pense qu'un grand nombre d'entre elles agissent par le biais de récepteurs membranaires, l'existence de ces récepteurs n'a été prouvée que dans peu de cas. Quant aux boucles de rétrocontrôle, on ne sait pas si elles existent.

La sécrétion hormonale suit-elle des rythmes ?
Cela dépend. La plupart des hormones sont sécrétées selon un rythme circadien. L'hormone de croissance, par exemple, est produite principalement la nuit, tandis que le cortisol, qui prépare l'organisme à affronter les contraintes de l'environnement, est libéré massivement au réveil. D'autres sont sécrétées selon un rythme cyclique lié à la répétition d'un mécanisme biologique donné - le cycle ovulatoire féminin, par exemple. La sécrétion d'une hormone donnée peut également répondre à un stimulus physiologique précis. Ainsi l'insuline est-elle libérée après le repas, lorsque la quantité de sucre sanguin augmente. De même une situation stressante et le fait de passer à l'action provoquent-ils une augmentation du taux d'adrénaline qui stimule le rythme cardiaque. A l'extrême, certaines hormones ne sont sécrétées qu'une fois dans la vie d'un individu. C'est le cas de l'ecdysone, hormone de la métamorphose de la chenille en papillon ou de la thyroxine qui permet la transformation du têtard en grenouille.

Si les phénomènes de sécrétion hormonale sont soumis à des rythmes, ils en génèrent également. La mélatonine, dont la sécrétion est strictement nocturne, joue un rôle particulièrement important dans l'adaptation de l'individu à son environnement. Cette hormone véhicule un double message. D'une part, elle contribue à la synchronisation des rythmes biologiques par une interaction avec l'horloge interne des individus. D'autre part, elle régule le déclenchement des fonctions saisonnières en informant l'organisme des variations de la longueur du jour : c'est l'hormone « donneuse de temps ». Elle joue ainsi un rôle important chez les espèces dont la reproduction, saisonnière, est influencée par la lumière : la sécrétion de leurs hormones sexuelles est conditionnée par le taux de mélatonine. Chez les moutons, par exemple, le taux des hormones sexuelles augmente avec le taux de mélatonine, lorsque les nuits rallongent. L'activité sexuelle est déclenchée à l'automne et la naissance des agneaux a lieu cinq mois et demi plus tard, au printemps. Inversement, chez les chevaux, c'est la diminution printanière du taux de mélatonine, lorsque les jours rallongent, qui stimule la sécrétion des hormones sexuelles. Les poulains naissent onze mois plus tard, au printemps également, période la plus favorable.

Hormones et cerveau : qui commande ?
Ni l'un ni l'autre. Système nerveux et système hormonal vont coopérer tout au cours de la vie, et même partager certaines molécules.

Ces dernières années, en effet, la distinction entre neurotransmetteurs et hormones s'est faite de plus en plus floue. Classiquement, un neurotransmetteur est une substance libérée par un neurone donné dans la fente synaptique, substance qui inhibe ou active le neurone suivant. Une hormone est quant à elle sécrétée dans le milieu intérieur le sang et exerce son effet sur un tissu ou organe éloigné. Cependant, on s'est rendu compte que certains neurotransmetteurs ont une action hormonale. En effet, il existe des neurones dits neurosécréteurs, qui libèrent des neurohormones : des molécules qui agissent comme neurotransmetteurs quand elles sont libérées au niveau d'une synapse, et comme hormones quand elles passent dans le circuit sanguin. C'est le cas de la vasopressine, synthétisée par des neurones de l'hypothalamus, libérée dans la circulation sanguine au niveau de l'hypophyse, et classiquement connue pour son effet antidiurétique. De nombreux travaux soulignent à présent ses capacités de neurotransmetteur.

Les deux systèmes, nerveux et hormonal, interagissent étroitement. Par exemple, la libération d'hormones par l'hypophyse est sous le contrôle des neurohormones dites « de libération », produites par l'hypothalamus, dont les neurones sont eux-mêmes stimulés ou inhibés par les influx nerveux provenant du système nerveux central. Ainsi, le fait qu'un nourrisson commence à téter est enregistré et transmis par le système nerveux jusqu'à l'hypothalamus qui déclenche la libération, par l'hypophyse, de l'hormone responsable de la montée de lait l'ocytocine. Inversement, les hormones exercent des rétroactions sur le système nerveux. Les stéroïdes, par exemple, peuvent traverser la barrière hémato-encéphalique* et agir directement sur le fonctionnement des neurones en se liant à des récepteurs situés à l'intérieur de la cellule nerveuse. Enfin, certaines hormones exercent une action globale sur les réseaux neuronaux. Elles interviennent dans le développement du cerveau et dans ce qu'on appelle la plasticité neuronale division cellulaire, différenciation des neurones, pousse des prolongements, établissement de contacts entre cellules, lors du développement prénatal et durant les mois qui suivent la naissance. Ces hormones sont susceptibles d'intervenir à nouveau à l'âge adulte lorsqu'il faut établir de nouvelles connexions en cas de lésion cérébrale, ou quand se réorganisent les circuits nerveux.

Garçon ou fille : les hormones ont-elles leur mot à dire ?
Aussi étrange que cela puisse paraître, la réponse est, dans une certaine mesure, oui. Certes, chez les mammifères, la détermination du sexe et la sexualisation des gonades en testicules ou en ovaires est essentiellement génétique. Mais la différenciation des voies génitales en voies mâles est conditionnée par la présence de testostérone et d'hormone anti-müllérienne*, toutes deux produites par le testicule embryonnaire. La perturbation de la synthèse de ces hormones peut engendrer des ambiguïtés sexuelles dans lesquelles le sexe phénotypique morphologique n'est pas en accord avec le sexe génotypique chromosomique. Très actives durant la vie foetale et les premiers mois de vie, les hormones sexuelles sont moins présentes durant l'enfance. Durant la puberté, elles sont à nouveau synthétisées de façon conséquente et conduisent à la mise en place du système mature féminin ou masculin et du cycle ovulatoire chez la femelle.

Chez les oiseaux et la plupart des amphibiens, la détermination du sexe se fait de façon similaire à celle des mammifères. En revanche, poissons et reptiles sont dépourvus de chromosomes sexuels. Chez eux, la sexualisation des gonades est entièrement sous dépendance hormonale. Chez certaines espèces comme les crocodiliens, la plupart des tortues, et quelques lézards et poissons, c'est la température du milieu qui oriente la sexualisation, car elle régule l'activité des gènes codant telle ou telle hormone. Chez beaucoup de poissons de récifs, c'est la structure du groupe la proportion de mâles et de femelles qui « décide » du sexe d'un individu. Ces poissons sont hermaphrodites : ils possèdent ovaires et testicules. Si un mâle disparaît, une femelle se masculinise. Ce phénomène s'effectue sous l'influence d'hormones dont la production, pense-t-on, est déclenchée sous l'effet de différents stimuli nerveux.

Les hormones influencent-elles les comportements ?
Les hormones sont impliquées dans de nombreux comportements qui vont du stress au comportement amoureux en passant par le comportement maternel ou l'agressivité. Elles n'agissent toutefois jamais seules dans leur mise en place, mais en liaison étroite avec le système nerveux. Par exemple, chez la brebis, l'attachement maternel est lié à la présence d'une hormone, l'ocytocine, dont la production est déclenchée par les stimulations nerveuses générées par les contractions de la femelle en train de mettre bas. En temps normal, la brebis éprouve de la répulsion pour le liquide amniotique. Sous l'influence de l'ocytocine, elle sera attirée par ce liquide dont est imprégné son nouveau-né. Cette attirance temporaire va la pousser à lécher son petit et à établir un premier contact. Les hormones jouent également un rôle important dans le comportement sexuel - par exemple, les parades très ritualisées des oiseaux. Chez les humains, ce sont les stéroïdes qui prédominent en ce domaine. Mais leur effet est plus difficile à estimer que celui des hormones intervenant dans la sexualité d'autres animaux au comportement très stéréotypé, car il se conjugue à d'autres paramètres, notamment culturels. Par ailleurs, une baisse de testostérone au cours de la vie, ou une surproduction, aura des effets centraux sur le comportement.

Les hormones végétales influencent quant à elles le comportement de la plante en fonction de l'environnement. Par exemple, en cas de stress hydrique, l'acide abscissique entraîne une fermeture des stomates au niveau de la feuille. Certaines phytohormones comme l'acide jasmonique sont synthétisées en cas de danger et enclenchent la production de molécules de résistance à l'agression.

Qu'est-ce qu'une hormone de synthèse ?
Les stéroïdes ont été les premières hormones synthétisées in vitro, dans les années 1950. C'était alors par voie chimique. En 1975, ce fut le tour des hormones protéiques comme l'insuline, par génie génétique cette fois. Dans ce type de synthèse, le gène codant pour l'hormone est transféré dans le génome de cellules en culture, généralement des bactéries. Ces dernières présentent l'avantage de se diviser rapidement, et donc de fournir de grosses quantités d'hormones en peu de temps. Pour les hormones plus complexes, par exemple les hormones glycoprotéiques comme les gonadotropines les dernières à avoir été synthétisées et les plus difficiles à fabriquer, on est obligé, les bactéries ne pouvant pas synthétiser de protéines glycosylées, d'utiliser des cellules eucaryotes qui se divisent moins vite. Ce mode de production coûte donc plus cher. L'utilisation d'hormones de synthèse représente une avancée décisive, car elle permet d'éviter les problèmes sanitaires qui peuvent résulter de l'usage d'hormones d'extraction. En effet, ces dernières sont susceptibles de servir de vecteur de contamination. Ainsi, des patients traités par de l'hormone de croissance extraite d'hypophyses prélevées sur les cadavres de personnes atteintes de la maladie de Creutzfeldt-Jakob ont contracté la maladie. Aujourd'hui, cette hormone est exclusivement produite par génie génétique.

Les hormones peuvent-elles servir de médicament ?
Oui. On peut évidemment les utiliser pour soigner les pathologies dues à un déficit en une hormone donnée : diabète, problèmes de croissance, problèmes de fécondité. Dans ce cas, l'hormone utilisée sera précisément celle qui fait défaut. Dans les troubles causés par une surproduction hormonale, il suffit bien souvent de traiter le malade avec une hormone impliquée dans la boucle de régulation et exerçant un contrôle négatif sur l'hormone incriminée. Reste le cas des pathologies hormono-dépendantes telles que le cancer de la prostate et une forme de cancer du sein : la croissance des cellules tumorales est stimulée dans le premier cas par la testostérone et dans le second cas par l'oestradiol. Une fois cette dépendance hormonale établie, la thérapie vise à supprimer la sécrétion de l'hormone en question.

Un traitement hormonal n'étant pas anodin, il ne doit être mis en oeuvre que si le rapport bénéfice/risque est réellement favorable. Ainsi la controverse concernant les effets secondaires des traitements hormonaux de substitution des femmes ménopausées risques accrus de cancers du sein, par exemple n'est-elle pas close. Quant aux hormones « de confort » telles que la mélatonine ou la DHEA, leur prise inconsidérée n'est pas à conseiller : au mieux elle n'a aucun effet, au pire elle est dangereuse. Les dangers d'une utilisation non contrôlée d'hormones sont particulièrement flagrants dans le cas du dopage. L'érythropoïétine EPO, par exemple, est une hormone qui stimule la production des globules rouges. Elle augmente l'hématocrite et permet de fixer plus d'oxygène, mais augmente parallèlement le risque de thrombose.

Enfin, dans la relation entre hormones et santé, un autre problème commence à préoccuper les scientifiques : l'impact de ce que l'on appelle les perturbateurs endocriniens. Ces molécules, pesticides ou autres substances chimiques, pourraient en effet perturber notre système de régulation hormonale et celui des animaux et végétaux de notre environnement.

Qu'est-ce qu'un boeuf ou un poulet « aux hormones » ?
Il s'agit d'un boeuf en fait, plutôt un veau ou d'un poulet auquel on a fait des injections d'hormones pour augmenter sa masse musculaire, et donc la quantité de viande obtenue après abattage. Certains pays, comme les Etats-Unis ou le Canada, font couramment usage de ce type de traitement. Mesure protectionniste ou d'intérêt sanitaire : il a été interdit en Europe dès 1984. Son impact sur la santé n'est pas démontré. Par ailleurs, il convient d'établir un distinguo entre l'injection d'un surplus d'hormones déjà synthétisées naturellement par l'animal et l'injection d'hormones qui lui sont totalement étrangères. En effet, les hormones naturelles sont rapidement dégradées par le boeuf ou le poulet. La testostérone, par exemple, disparaît en quelques jours, et le consommateur ne risque pas de l'absorber si la dernière injection a lieu quelques jours avant l'abattage. Mais elle a tout de même un effet sur le goût car elle modifie le ratio protéines/graisse - laquelle donne l'essentiel de sa saveur à la viande. Quant aux hormones qui ne sont pas naturellement déjà présentes chez l'animal, elles présentent le désavantage réel, quand on les injecte, d'être dégradées assez lentement et de s'accumuler dans la masse graisseuse. Le consommateur risque donc de les ingérer.
NOTES
* Hémolymphe : fluide qui circule dans les vaisseaux et l'espace interstitiel des tissus des invertébrés, et transporte les métabolites et l'oxygène sauf chez les insectes, où ce dernier circule dans des trachées.

*La barrière hémato-encéphalique , constituée par la paroi des vaisseaux capillaires du cerveau, restreint au strict minimum le type de molécules accédant à ce dernier. Elle le protège ainsi des variations de composition du sang, mais interdit aussi le passage de nombreux médicaments.

* Hormone anti-müllérienne : hormone sécrétée par le testicule embryonnaire. Elle provoque l'atrophie du canal de Müller qui, chez l'embryon femelle, est à l'origine des trompes, de l'utérus et d'une grande partie du vagin.
SAVOIR
-Y. Combarnous, Les hormones, PUF, collection « Que sais-je ? », 1998.

-J.-D. Vincent, La Biologie des passions, éditions Odile Jacob, 1999 poche 2002.

-C.G.D. Brook et N.J. Marshall, Endocrinologie, De Boeck Université, 1998.

 

 DOCUMENT   larecherche.fr    LIEN

 
 
 
 

A D N

 

 

 

 

 

 

 

La modification de l'ADN à la portée de tous
Jean-Philippe Braly dans mensuel 495


daté janvier 2015 -  Réservé aux abonnés du site
Dérivée d'un mécanisme de défense bactérien, une nouvelle technique de suppression et d'insertion de gènes se répand dans les laboratoires. En ligne de mire : l'espoir de traiter de nombreuses maladies génétiques.
« Je ne serais pas surpris que cette innovation révolutionnaire soit très vite récompensée par un Nobel », lançait récemment Alain Fischer, de l'hôpital Necker, l'un des spécialistes français de thérapie génique, ensemble de traitements qui corrigent directement chez les patients des gènes défectueux à l'origine de maladies. L'innovation révolutionnaire en question ? Une technique de génie génétique, aussi efficace que son nom est imprononçable : CRISPR-Cas9. Et Alain Fischer n'est pas le seul à s'enthousiasmer : le jury du prix Breakthrough a récompensé en novembre 2014 Emmanuelle Charpentier et Jennifer Doudna, qui ont reçu chacune 3 millions de dollars pour cette découverte.

En à peine deux ans, des équipes du monde entier se sont approprié CRISPR-Cas9 pour modifier le génome de nombreux types de cellules, tant chez les bactéries que chez les plantes ou chez les animaux, avec une facilité déconcertante. Et en 2014, la technologie a franchi deux nouvelles étapes importantes. D'abord, elle s'est révélée utilisable sur des primates. Ensuite, elle a permis de corriger des maladies génétiques in vivo sur des souris.

Palindromes
CRISPR-Cas9 tire son origine d'études très fondamentales du génome bactérien. En 1987, Atsuo Nakata et son équipe de l'université d'Osaka, au Japon, découvrent de curieuses séquences d'ADN répétitives dans le génome de bactéries Escherichia coli [1]. Dans certaines parties de ces séquences, les quatre « lettres » constitutives de l'ADN forment des suites identiques dans un sens de lecture ou dans l'autre, comme des palindromes.

Ces séquences énigmatiques suscitent toutefois peu d'intérêt. Pour preuve, ce n'est qu'en 2002 qu'on les baptisera officiellement CRISPR (acronyme anglais pour « courtes répétitions en palindrome regroupées et régulièrement espacées »). En 2005, tout de même, des bio-informaticiens découvrent que les morceaux d'ADN intercalés entre ces palindromes sont souvent des séquences d'ADN de virus.

En 2007, des chercheurs de l'industriel laitier danois Danisco découvrent que lorsque les bactéries qu'ils utilisent pour fabriquer des yaourts et des fromages ont des séquences CRISPR, elles survivent mieux aux infections virales. « Il s'agit d'une sorte de système immunitaire capable de garder la mémoire d'une agression par un virus ou une séquence d'ADN étrangère, afin de combattre ce même agresseur lorsqu'il envahit à nouveau la bactérie », résume Christine Pourcel, de l'Institut de génétique et microbiologie d'Orsay, qui a participé à cette découverte.

Bref, les CRISPR agiraient comme une sorte de vaccin. Restait à comprendre comment. Plusieurs microbiologistes à travers le monde vont s'y atteler. Parmi eux : la Française Emmanuelle Charpentier qui travaille alors à l'université suédoise d'Umeå. Avec son équipe, elle va contribuer au décryptage d'un des principaux mécanismes mis en jeu.

Technique de routine
Comme pour n'importe quel gène, chaque séquence CRISPR, qui contient donc de l'ADN viral, est transcrite en plus petites molécules intermédiaires, des ARN, qui contiennent la séquence complémentaire de l'ADN viral. Mais plutôt que d'être ensuite traduits en protéines, ces ARN vont se lier à une enzyme découpeuse d'ADN nommée Cas9. Si cette structure rencontre l'ADN correspondant d'un virus dans la cellule, l'ARN s'y apparie et la Cas9 le coupe en deux. Toutefois, le mécanisme permettant l'accès à l'un des deux brins de l'ADN viral n'est pas encore bien élucidé. En attendant, le système constitue un redoutable attelage pour détecter facilement une séquence d'ADN donnée, puis la découper avec précision.

Ces caractéristiques en feraient un outil rêvé de génie génétique : on pourrait l'utiliser pour supprimer un gène et ainsi découvrir sa fonction ; on pourrait aussi éliminer un gène néfaste ou déficient. Il suffirait de fabriquer en laboratoire un « ARN guide » correspondant au gène que l'on souhaite cibler, puis de l'arrimer à une enzyme Cas9. Cette dernière découperait alors le gène. C'est précisément ce qu'Emmanuelle Charpentier réussit à faire in vitro en 2012, en s'alliant avec sa consoeur Jennifer Doudna, de l'université de Berkeley, aux États-Unis. [2]

Ce résultat a immédiatement enflammé les généticiens du monde entier. Il faut dire que CRISPR-Cas9 possède plusieurs atouts de taille par rapport aux meilleures enzymes découpeuses d'ADN (les nucléases) développées avant lui : nucléases à doigts de zinc (ZFNs), nucléases « TALENs », etc.

Premier atout : la simplicité. En effet, pour se lier à l'ADN cible, ces nucléases concurrentes nécessitent la fabrication de fragments protéiques sur mesure pour chaque gène ciblé, une opération très complexe, notamment à cause de la longueur des fragments protéiques à créer. Tandis qu'avec CRISPR-Cas9, il suffit de fabriquer de petits ARN, une technique déjà utilisée en routine dans les laboratoires de recherche du monde entier, par exemple pour faire synthétiser telle ou telle protéine dans une cellule, ou pour perturber le fonctionnement de gènes. Et en utilisant plusieurs ARN guides, diverses équipes ont très facilement réussi à cibler plusieurs gènes à la fois, y compris dans des cellules humaines.

Multiples applications
Deuxième atout majeur : la rapidité, liée à la simplicité du système. « La mise au point d'un CRISPR-Cas9 prêt à cibler un gène particulier prend une à deux semaines tout compris contre un à deux mois avec une ZFN ou une TALEN », indique Tuan Huy Nguyen, chercheur Inserm au Centre de recherche en transplantation et immunologie (CRTI) de Nantes. Troisième atout enfin, qui n'est pas le moindre, CRISPR-Cas9 est au minimum dix fois moins coûteux que ses concurrents, l'obtention d'ARN sur mesure faisant appel à des techniques de routine en biologie moléculaire.

« En théorie, cette technique ne permet ni de cibler plus de zones du génome ni de le faire plus précisément, tempère Ignacio Anegon, également au CRTI de Nantes, où il utilise CRISPR-Cas9 pour créer des rats génétiquement modifiés. Mais en pratique, en simplifiant le génie génétique et en le rendant accessible à n'importe quel laboratoire, la technique a fait exploser le nombre d'études. Cette démocratisation s'est en effet vite concrétisée par une déferlante de publications confirmant son efficacité sur un très grand nombre de génomes de bactéries, mais aussi d'animaux et de végétaux. CRISPR-Cas9 fonctionne avec la même facilité sur les génomes plus complexes des cellules eucaryotes, où l'ADN est recroquevillé dans un noyau. » Les scientifiques commencent tout juste à entrevoir les mécanismes très complexes mis en jeu par CRISPR-Cas9 pour y parvenir, mais en tout cas, ça marche !

Ainsi, en janvier 2013, quatre équipes annoncent avoir réussi à détruire des gènes cibles dans des cellules humaines. Les applications vont alors s'enchaîner à un rythme effréné et avec succès pour modifier des gènes d'organismes variés : bactéries, levures, riz, mouches, nématodes, poissons-zèbres, rongeurs, etc. Et certains chercheurs modifient légèrement la technique pour que la Cas9 ne coupe pas le gène cible, mais stimule son expression, l'inhibe ou le remplace par un autre... transformant l'outil en une sorte de couteau suisse génétique [fig. 1].

Copier-coller de l'ADN
En 2014, l'outil a franchi deux caps importants : son premier succès sur des primates, et sa capacité à corriger des maladies génétiques sur des souris. Le premier résultat a été présenté en février par Jiahao Sha, de l'université médicale de Nanjing, en Chine [3].

Dans des embryons de macaques asiatiques encore constitués d'une seule cellule, son équipe a injecté cinq ARN guides conçus pour cibler simultanément cinq zones réparties sur trois gènes particuliers, ainsi que le matériel génétique nécessaire à la synthèse de Cas9. Ils ont observé que chez huit embryons ainsi traités, CRISPR-Cas9 avait réussi à agir sur deux des trois gènes cibles. Puis les biologistes ont recommencé l'opération sur 86 autres embryons qu'ils ont transférés dans 29 femelles porteuses. À la publication de l'étude, une seule femelle était arrivée à terme. Elle avait donné naissance à des jumeaux chez lesquels CRISPR-Cas9 avait aussi agi simultanément sur deux des trois gènes.

« Ce résultat montre que CRISPR-Cas9 pourrait être utilisé pour générer des primates modèles de maladies humaines, ce qui constituerait une avancée importante », commente Tuan Huy Nguyen. Enfin, les chercheurs n'ont détecté aucune mutation sur le reste du génome. Un résultat de bon augure si l'on veut un jour utiliser CRISPR-Cas9 pour corriger des cellules humaines malades en laboratoire, avant de les réimplanter aux patients.

Mais c'est surtout fin mars qu'une équipe de l'Institut de technologie du Massachussets, aux États-Unis, a concrétisé le potentiel médical de CRISPR-Cas9 [4]. Ces biologistes l'ont utilisé sur la souris pour corriger une maladie génétique incurable du foie, liée à une mauvaise dégradation de la tyrosine, un acide aminé, la tyrosinémie*. À des souris malades adultes, l'équipe a injecté trois ARN guides ciblant trois séquences d'ADN liées à la mutation, le gène de la Cas9 et le gène sain.

Résultat : environ 0,5 % des cellules du foie, les hépatocytes, ont correctement incorporé le gène sain à la place du gène déficient. Trente jours plus tard, ces cellules redevenues saines ont commencé à proliférer et à remplacer les cellules malades, pour finalement représenter environ un tiers de tous les hépatocytes. Une proportion suffisante pour que les souris survivent malgré l'arrêt du médicament de référence qui réduit la production de tyrosine.

Myopathie de Duchenne
En août dernier, c'est une autre maladie génétique incurable qui a subi la loi de CRISPR-Cas9 : la myopathie de Duchenne. Cette dégénérescence des muscles est due à des mutations sur le gène codant la dystrophine, protéine indispensable au bon fonctionnement des fibres musculaires. Menée à l'université du Texas, aux États-Unis, une étude a porté sur de jeunes embryons de souris juste après fusion de l'ovule et du spermatozoïde, chez lesquels le gène de la dystrophine avait été muté pour mimer la maladie [5].

L'équipe leur a injecté un ARN guide ciblant le gène muté, la Cas9, et un gène destiné à corriger la mutation. Puis les embryons ont été implantés dans des mères porteuses. Ils ont donné naissance à des souris que les chercheurs ont élevées pendant neuf mois. Chez celles dont le taux de cellules correctement corrigées par CRISPR-Cas9 atteignait au moins 40 %, les muscles étaient normaux. « Ces études sur des souris constituent les premières preuves in vivo que CRISPR-Cas9 est capable de corriger des maladies génétiques », commente Tuan Huy Nguyen.

Pourrait-on alors utiliser CRISPR-Cas9 sur l'homme ? Il faudra d'abord franchir plusieurs étapes. « Le point critique sera de confirmer que ce système n'induit pas de lésions dans d'autres régions du génome, prévient Alain Fischer. Et afin d'obtenir un effet thérapeutique, il faudra aussi optimiser la fréquence à laquelle les cellules ciblées sont corrigées. » Voilà pourquoi les recherches vont bon train pour développer des moyens capables de mieux faire pénétrer CRISPR-Cas9 dans les cellules : nanoparticules, Cas9 plus petites, etc.

D'autres applications pourraient toutefois voir le jour : lutte contre les bactéries résistantes aux antibiotiques, applications en agriculture, en virologie, en pharmacie... « Cette technologie concerne tous les domaines de recherche en biologie ! » résume Alain Fisher. « Dérivée d'études très en amont sur les bactéries, cette invention montre l'importance de continuer à investir dans la recherche fondamentale », conclut Emmanuelle Charpentier.
* LA TYROSINÉMIE est une maladie génétique qui génère une accumulation de déchets endommageant le foie.
L'ESSENTIEL
- UNE NOUVELLE MÉTHODE permet de modifier facilement le génome de toutes les sortes de cellules.

- NOMMÉE CRISPR-CAS9, elle est issue d'un mécanisme de défense bactérien découvert il y a moins de dix ans.

- EN 2014, elle a été utilisée avec succès chez des primates et elle a permis de soigner des souris adultes malades.
UN SUCCÈS QUI AIGUISE BIEN DES APPÉTITS
La technique CRISPR-Cas9 qui se répand agite le secteur des biotechnologies. Les sociétés et les laboratoires ayant préalablement investi dans les outils concurrents - ZFNs et TALENs - accusent le coup. Résultat : de nombreuses sociétés se ruent désormais sur CRISPR-Cas9 en proposant des kits prêts à l'emploi. Mais les experts du secteur misent surtout sur les possibles applications médicales de la technologie, au premier rang desquelles la correction de gènes défectueux (la thérapie génique). Emmanuelle Charpentier, aujourd'hui au Centre Helmholtz pour la recherche sur les infections, en Allemagne, et Jennifer Doudna, à l'université de Berkeley, aux États-Unis, qui ont codirigé la découverte initiale, l'ont bien compris : chacune a fondé une société de biotechnologie dans cette optique, respectivement CRISPR Therapeutics (implantée en Suisse et au Royaume-Uni) et Editas (aux États-Unis). Elles ont déjà levé plusieurs dizaines de millions de dollars. Toutefois, d'autres chercheurs essaient de s'accaparer la propriété intellectuelle de l'invention. C'est le cas de Feng Zhang, du Broad Institute à Cambridge, aux États-Unis - également cofondateur d'Editas - qui vient de faire valider un brevet sur CRISPR-Cas9 auprès des autorités américaines grâce à une procédure accélérée... court-circuitant le duo Charpentier-Doudna, dont le brevet commun est toujours en cours d'instruction ! « L'affaire est aujourd'hui entre les mains des avocats », concède Emmanuelle Charpentier, qui préfère rester discrète sur le sujet.

 

 DOCUMENT       la recherche.fr      LIEN

 
 
 
 

LES ENJEUX ÉTHIQUES DE LA GÉNÉTIQUE

 

 

 

 

 

 

 

Texte de la 31ème conférence de l'Université de tous les savoirs réalisée le 31 janvier 2000 par Axel Kahn

Les enjeux éthiques de la génétique


De tous temps, les sciences de la vie ont eu une résonance individuelle, sociale et parfois politique toute particulière. Cest que le monde vivant, auquel appartient lHomme, est traditionnellement considéré comme relevant du domaine divin. Dailleurs, le vitalisme, un système de pensée excluant lessence de la vie des processus physico-chimiques sappliquant au monde inanimé, a persisté jusquau début de notre siècle, survivant donc pendant plusieurs centaines dannées à lémergence de lesprit scientifique en Europe au XVIIème siècle.

Au XIXème siècle, la théorie de lévolution, qui sapplique à lHomme et le dépossède donc de son privilège de créature à limage de Dieu, a constitué une onde de choc dont les effets se font encore sentir aujourdhui. En effet, les grandes idéologies qui ont si cruellement marqué le XXème siècle, notamment leugénisme et le racisme, ont massivement emprunté à la science de lévolution ce qui leur semblait de nature à conforter leurs préjugés.

La génétique, cest-à-dire létude des lois gouvernant la transmission des caractères héréditaires, est une science encore plus récente puisque, issue des travaux de Gregor Mendel en 1865, elle nest redécouverte, indépendamment de ceux-ci, quau début du XXème siècle. A dire vrai, la génétique a plus modifié lénoncé des idéologies enracinées dans une conception pervertie de lévolution quelle ne les a créées. Il nempêche que cette science, appliquée à lhomme, se fixe pour objectif de déterminer lorigine des caractères humains, des similitudes et des différences, de leur transmission au travers du lignage. Toutes ces questions sont probablement de celles que se posent les communautés humaines depuis lorigine si bien que, après le concept de lévolution, la science génétique devait avoir sur lhistoire du XXème siècle plus de répercussions que tout autre science. Le gène est en effet rapidement devenu lélément de base matérialisé des vieilles conceptions déterministes et des projets eugénistes et racistes. Depuis la nuit des temps, les hommes considèrent que le destin est écrit. Avec la génétique, na-t-on pas reconnu quil létait dans le langage des gènes ? Leugénisme, cest-à-dire la mise en Suvre de politiques volontaires damélioration des sociétés humaines, a dès lors été entendu comme lensemble des activités visant à limiter la diffusion des mauvais gènes dans la population. Les races, considérées antérieurement comme inférieures car à un niveau moindre de lévolution humaine, se sont vues définies par leur faible qualité génétique. Chacun se rappelle les horreurs commises au nom de leugénisme et du racisme, au nom des gènes ! Après guerre, leffroi des sociétés démocratiques à la découverte de létendue des dégâts provoqués par ces idéologies devait largement libérer les sciences biologiques, notamment la génétique, de leur gangue idéologique.

La théorie de lévolution permet de prévoir que les mécanismes gouvernant tous les organismes vivants sont de même nature, puisque tous les êtres dérivent dune même forme de vie originelle. Cest ce que confirme luniversalité du code génétique, cest-à-dire des règles permettant dexpliquer les propriétés biologiques des cellules vivantes à partir de lenchaînement des lettres qui constituent leur matériel génétique. A partir de 1973, la réunion des outils du génie génétique aboutit à une confirmation supplémentaire des déductions tirées de la théorie de lévolution. Tout gène, appartenant à quelque être vivant que ce soit, peut fonctionner lorsquil est transféré dans un autre organisme vivant. Cela signifie quil est possible dasservir génétiquement nimporte quel être à lexpression du programme génétique dun autre être vivant, simplement par transfert de gènes. Cest alors lexplosion des progrès de la biologie durant les vingt cinq dernières années de notre siècle, qui trouvent une illustration éloquente dans les programmes génomes.

Avant deux à trois ans, on connaîtra lenchaînement des quelques 3,4 milliards de lettres constituant notre génome, cest-à-dire les molécules dADN de nos chromosomes qui forment le support moléculaire de nos quelques 80.000 à 140.000 milles gènes. Les enjeux éthiques de ces avancées scientifiques découlent à la fois du caractère sensible de la génétique, proie idéale pour toute les idéologies de la stigmatisation, et de lampleur des connaissances et outils nouveaux engendrés. A lheure du génie génétique et des programmes génomes, il existe sur le plan biologique une unité profonde du monde vivant à laquelle néchappe pas lunivers de lHomme, accessible aux mêmes méthodes détude et de modification génétique que nimporte quel autre organisme, animal, végétal ou microbien. La quête de lessence humaine dans les méandres du génome est donc condamnée à léchec, aboutissant à la négation de la spécificité de lhumain. Loeil rivé sur les gènes et le fonctionnement des cellules, le biologiste risque de négliger ce qui est le plus caractéristique du processus dhominisation, cest-à-dire lédification en dehors du mammifère humain, de ses gènes, du monde symbolique, culturel et des connaissances, enrichi génération après génération par lHomme. Ce nest quaprès imprégnation par cet univers intellectuel quil a progressivement créé que le primate Homo sapiens shumanise. Cependant, bien entendu, ce sont les propriétés biologiques du cerveau humain, inscrites dans les gènes de lHomme, qui gouvernent sa sensibilité aux empreintes symboliques, culturelles et éducatives. En retour, ainsi configurées par acculturation, ce sont les capacités mentales de lHomme qui lui permettent de contribuer à lenrichissement de lunivers culturel et des connaissances.

Le danger est grand que tous ceux qui sont déjà persuadés que le destin humain est déterminé par sa dimension biologique se trouvent confortés dans leurs préjugés par une certaine présentation du programme génome humain et par linterprétation rapide de nombre détudes génétiques, en particulier celles portant sur les comportements. Le destin est écrit, pensaient les Grecs. Il est inscrit dans des êtres biologiques soumis aux mécanismes de lévolution, propose la lecture sociobiologique du darwinisme. Il peut être lu dans ce grand livre de lHomme quest le génome humain, se laissent parfois aller à affirmer des généticiens imprudents ou idéologiquement marqués.

La réalité dun tel danger est illustré pratiquement chaque semaine dans les publications scientifiques et le compte-rendu quen font les médias généralistes. On apprend en effet quont été localisés, identifiés, voire manipulés les gènes de lamour maternel, de la violence, de la curiosité intellectuelle, de la fidélité masculine, de lhomosexualité ... voire de lintelligence. En fait, les progrès récents de la génétique et de la neurobiologie moléculaire ne disent rien de tel. Ce que gouvernent les gènes humains, cest la plasticité cérébrale, cest-à-dire la sensibilité du cerveau de lHomme aux impressions laissées par le milieu socioculturel. Ils sont ainsi le moyen de desserrer létau des comportements innés auxquels sont si étroitement assujettis les mammifères non humains. A ce titre, les gènes humains sont plus le moyen de la liberté que sa limite.

Il nempêche quil serait également déraisonnable de refuser toute forme de déterminisme génétique : les gènes, et cest là leur définition, sont bien des déterminants de propriétés biologiques. Le fait que celles-ci dépendent souvent de lintervention de plusieurs gènes et varient en fonction du contexte de lenvironnement nenlève rien à cette réalité qui fonde la science génétique. En médecine, cela se manifeste par le fait quil est possible de ranger toutes les maladies humaines sur une échelle. A gauche de celle-ci se trouvent les affections qui sont presque totalement déterminées par laltération dun gène. Toute personne ayant hérité dun ou de deux gènes altérés de ses parents, suivant le type de transmission génétique, développera la maladie. Tel est le cas de l hémophilie, de la mucoviscidose, de la myopathie de Duchenne, de la chorée de Huntington ...etc. Un peu à droite de cette position se placent des maladies qui sont très dépendantes de laltération dun gène, mais dont la «pénétrance» cest-à-dire ici le risque associé nest pas total. Ainsi, des personnes ayant hérité dune copie dun gène muté de susceptibilité au cancer du sein ou du colon auront entre 50 et 75% de chances de développer de telles tumeurs, mais certaines personnes y échapperont. Encore plus à droite se situent nombre daffections communes qui sont en partie déterminées par la constitution génétique, souvent par plusieurs gènes, mais également en très grande partie par les habitudes de vie et lenvironnement. On peut citer ici la sensibilité aux infections, à de très nombreux cancers, aux maladies cardio-vasculaires, à lathérosclérose, à lhypertension artérielle, aux formes communes du diabète et de lobésité et, probablement, à nombre de maladies psychiatriques. Enfin, tout à fait à droite de notre échelle on range des maladies sans fondement génétique, dorigine avant tout toxique ou accidentelle. La grande fréquence des affections possédant des déterminants génétiques, absolus ou relatifs, est à lorigine de lessor de ce qui a été appelé «médecine prédictive», ou bien, pour utiliser une désignation mieux appropriée, médecine de prévision. Lorsque la possibilité de prévoir la survenue dune maladie permet de léviter, ou bien den atténuer la gravité, une telle prévision génétique constitue un plein succès de la médecine. Cependant, fréquentes sont les situations ou prévoir ne permet pas encore de prévenir. Lourdes de menaces pour léquilibre psychique des personnes, de telles prévisions débouchant sur limpuissance thérapeutique nont guère dintérêt médical. Cependant, la possibilité de prévoir le destin biologique des individus a un intérêt considérable pour nombre de secteurs dactivité : lassurance privée, qui gagnerait à établir des groupes homogènes de risques dont les membres seraient assujettis à des tarifs différentiels, la sélection des candidats à un emploi salarié, si les tests génétiques permettaient doptimaliser ladéquation entre les employés et le poste de travail ; le prêt bancaire...etc. La généralisation de telles pratiques, dont la logique économique est indéniable, aboutirait ni plus ni moins à un bouleversement de nos sociétés. En effet, lillusion selon laquelle tous les hommes naissent et demeurent égaux en dignité et en droit serait abandonnée puisque les droits réels des personnes ne seraient plus que ceux que leur laissent leurs gènes.

Le développement des recherches en génétique humaine offre bien entendu des outils dune redoutable efficacité pour poursuivre par dautres moyens les vieux desseins eugéniques. Au-delà du diagnostic prénatal de maladies génétiques gravissimes, la tentation se fait jour de soumettre plus généralement les embryons humains à un tri sur la base de caractéristiques moins pathologiques, voire totalement physiologiques tel que le sexe. Ce qui est en cause ici, cest lessentielle irréductibilité des caractéristiques de chaque individu à la volonté normative de tiers, fussent les parents. La prédétermination par ceux-ci du sexe et de laspect dun enfant à naître serait naturellement portée à son maximum par lutilisation du clonage humain à visée reproductive.

Leugénisme à lheure de la génétique, nous lavons vu, revient à lamélioration du potentiel génique dun lignage humain. Le moyen en a été jusqualors la sélection. Le mythe dun eugénisme positif se fixant pour but non pas lélimination des sujets au patrimoine insuffisant, mais laugmentation du potentiel génique par apport de gènes «améliorateurs» est ancien et semble même gagner aujourdhui en consistance, sinon scientifique au moins idéologique. Sur le plan scientifique, les qualités proprement humaines, laptitude à créer du sens, de la beauté, de la bonté sont à lévidence irréductibles à la manipulation grossière de quelques gènes. Cependant on a pu lire à la fin de lannée 1999 sous la plume de certains des auteurs et philosophes les plus éminents du moment lénoncé de scénarios prévoyant une telle modification biotechnologique de lhomme. A ce degré de diffusion du mythe, il devient une réalité sociale et une menace idéologique.

En conclusion, la génétique en elle-même ne dit rien de bien nouveau sur la nature humaine qui ne soit déjà implicite dans la théorie de lévolution. En revanche, elle engendre une série de données et doutils, moralement neutres par eux-mêmes, mais dont laccaparement par les vieilles idéologies du déterminisme, de la stigmatisation et de lexclusion est particulièrement aisé et dangereux. En ce sens, le généticien, conscient de la susceptibilité particulière de son domaine scientifique aux récupérations idéologiques, a une responsabilité élective : non seulement réaliser du mieux quil le peut une science qui fasse honneur au génie humain, mais aussi simpliquer pour la présenter au public, expliquer ce quelle signifie et ce quil est illégitime de lui faire dire. En tant que citoyen, il reviendra ensuite au généticien de prolonger ce travail de recherches et dexplications par un combat citoyen contre toutes les tentatives dasservir lHomme. Sil est parfaitement illégitime de faire dire à la génétique que nous sommes tous prisonniers de nos gènes, la science ne suffit pas non plus à fonder lexigence de liberté. A ce stade, lengagement est dautre nature. Il est moral.

 

DOCUMENT       canal-u.tv     LIEN 

 
 
 
 

MÉIOSE

 

 

 

 

 

 

méiose
(grec meiôsis, diminution)


Double division de la cellule aboutissant à la réduction de moitié du nombre des chromosomes, et qui se produit au moment de la formation des cellules reproductrices, ou gamètes. (À l'issue de la méiose, chaque cellule diploïde forme ainsi quatre gamètes haploïdes.)
BIOLOGIE

La méiose intervient dans la formation des gamètes mâles (spermatozoïdes) et femelles (ovules), constituant un phénomène régulateur préalable à la fécondation. En effet, si la méiose n'avait pas lieu, les deux gamètes se rencontrant lors de la fécondation auraient chacun 2n chromosomes et formeraient une cellule-œuf anormale à 4n chromosomes.
La méiose est donc un mécanisme particulier de division cellulaire qui aboutit à la réduction de moitié du nombre de chromosomes : elle permet d'obtenir quatre cellules filles haploïdes (à n chromosomes) à partir d'une cellule mère diploïde (à 2n chromosomes).
La méiose implique deux divisions distinctes qui mettent en jeu l'élaboration des fuseaux achromatiques et la migration des chromosomes.
1. La première division de méiose, ou division réductionnelle

Elle est précédée d'une longue prophase durant laquelle s'effectuent l'appariement des chromosomes homologues et des échanges entre chromosomes. La prophase est divisée en cinq stades, dont les noms font référence à l'aspect des chromosomes. La synthèse d'ADN a lieu avant le début de la méiose.


1.1. La prophase 1
Au premier stade, dit leptotène (« filament fin », littéralement), les chromosomes, bien que peu condensés, deviennent visibles. Apparaissent alors des zones limitées de spiralisation croissante, les chromomères. Pour les chromosomes homologues, la taille et la position de ces zones restent identiques.
Au second stade, dit zygotène («filament torsadé»), les chromosomes, au cours d'un processus appelé synapsis, se condensent et se raccourcissent. Les chromosomes homologues s'apparient – les paires individualisées sont alors appelées bivalents. Il n'existe pas de site spécifique d'appariement le long des chromosomes.
Le troisième stade, dit pachytène (« filament épais »), relativement long, se caractérise par une condensation et un raccourcissement accrus des chromosomes, qui présentent finalement un aspect de points et de bâtonnets. Il peut survenir à ce stade des échanges de segments au cours d'enjambements (crossing-over) entre les chromatides de chromosomes homologues.
Au stade diplotène (« filament double »), les paires de chromosomes homologues se séparent partiellement en quatre chromatides. Ils restent attachés en un ou plusieurs points, appelés chiasmas, qui correspondent aux zones de crossing-over, survenus lors du stade précédent. Les paires de chromosomes offrent l'aspect de croix ou de boucles, selon qu'ils s'attachent en un point ou deux. Pendant ce temps, la spiralisation et le raccourcissement des chromosomes suivent leur cours.
Au dernier stade, la diacinèse, la condensation, et donc l'épaississement, est maximale. De plus, les chromosomes tendent à migrer vers la périphérie du noyau. Quelquefois, les chiasmas peuvent se déplacer vers les extrémités des chromosomes, c'est la terminalisation. La rupture de l'enveloppe nucléaire permet la fixation des paires de bivalents au fuseau de microtubules qui s'est formé pendant cette prophase.


1.2. La métaphase 1
Les bivalents ont atteint un état relativement stable ; leurs kinétochores (points d’attache des microtubules sur le chromosome) sont équidistants par rapport à la plaque équatoriale. La forme qu'adopte alors un bivalent dépend de la localisation des kinétochores ainsi que du nombre et de la position de ses chiasmas. Les bivalents présentant un seul chiasma prennent l'aspect d'une croix. L'état de stabilité atteint lors de la première métaphase résulte directement de la tension qu'exercent les fibres centromériques sur les kinétochores de chaque bivalent ainsi que de l'association constante des chromatides sœurs.


1.3. L'anaphase 1
Les chiasmas achèvent leur terminalisation. Les chromosomes homologues de chaque paire se séparent alors ; ils migrent chacun vers un pôle de la cellule. Ce déplacement est dû au raccourcissement des fibres du fuseau, qui entraînent les kinétochores vers les pôles.


1.4. La télophase 1
À ce stade, la membrane nucléaire se reconstitue (une membrane autour de chaque groupe de chromosomes), les nucléoles réapparaissent et la cytocinèse (la division du cytoplasme) a lieu. On obtient alors deux cellules filles à n chromosomes. La quantité de chromosomes a été divisée par deux : c’est pourquoi la première division méiotique est aussi appelée division réductionnelle.


2. L'interphase
Cette étape est particulièrement courte. Il n'y a en effet pas de réplication d'ADN entre la première et la seconde division. Les deux cellules filles issues de la première division méiotique restent haploïdes (n).


3. La seconde division de méiose
Chez certains végétaux, la télophase 1, l'interphase et la prophase 2 sont pratiquement confondues. Toutefois, cette règle n'est pas générale : en effet, la plupart des espèces végétales et animales présentent une seconde division complète.
Au cours de la prophase 2, un fuseau méiotique se constitue, tandis que l'enveloppe nucléaire disparaît.
Lors de la métaphase 2, les demi-bivalents migrent vers le plan équatorial du fuseau, où durant l'anaphase 2 chaque chromosome se scinde longitudinalement en deux chromatides.
C'est à la télophase 2 qu'ont lieu la formation de la membrane des deux noyaux fils, ainsi que la division du cytoplasme (cytocinèse).
Cette seconde division est une division équationnelle, qui permet à chaque cellule haploïde issue de la première division de donner deux autres cellules haploïdes.


4. Les produits de la méiose
Les deux divisions de la méiose répartissent les quatre chromatides de chaque bivalent dans les noyaux de chacune des quatre cellules filles. Ce processus implique que le matériel génétique des produits de la méiose est divisé par deux, réduction rétablie lors de la fusion des deux cellules sexuelles (fécondation).
La méiose entraîne également une recombinaison de chromosomes entiers (réassortiment) ainsi que de certains de leurs segments (enjambements). Le réassortiment est dû au caractère aléatoire du sens de migration des paires de centromères au cours de la première division, et de celui des demi-centromères au cours de la seconde. Il est à l'origine des différences ou des ressemblances entre un enfant et ses parents. Un enjambement consiste en un échange de segments géographiquement semblables entre deux chromatides non sœurs. Ce phénomène a lieu lorsque les chiasmas se sont déjà formés.


BOTANIQUE
Dans le règne végétal, les cellules haploïdes peuvent se multiplier par mitose pendant au moins deux ou trois générations cellulaires et parfois beaucoup plus. Les produits immédiats de la méiose ne sont donc pas toujours les gamètes eux-mêmes. Chez les angiospermes (plantes à fleurs), par exemple, le gamète femelle (oosphère) n'est que l'un de huit noyaux haploïdes issus de trois divisions successives de la cellule mère du sac embryonnaire, tandis que le gamète mâle est issu de deux divisions cellulaires successives au sein du grain de pollen d'abord, puis du tube pollinique.

 

   DOCUMENT   larousse.fr    LIEN

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google